27 research outputs found

    Virtual Clinical Trials: One Step Forward, Two Steps Back

    Get PDF
    Virtual clinical trials have entered the medical research landscape. Today’s clinical trials recruit subjects online, obtain informed consent online, send treatments such as medications or devices to the subjects’ homes, and require subjects to record their responses online. Virtual clinical trials could be a way to democratize clinical research and circumvent geographical limitations by allowing access to clinical research for people who live far from traditional medical research centers. But virtual clinical trials also depart dramatically from traditional medical research studies in ways that can harm individuals and the public at large. This article addresses the issues presented by virtual clinical trials with regard to: (1) recruitment methods; (2) informed consent; (3) confidentiality; (4) potential risks to the subjects; and (5) the safety and efficacy of treatments that are approved

    Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

    Get PDF
    Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes1, with epidemiological association with other autoimmune diseases2. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment

    Genome-wide copy number variations in a large cohort of bantu African children

    No full text
    Abstract Background Copy number variations (CNVs) account for a substantial proportion of inter-individual genomic variation. However, a majority of genomic variation studies have focused on single-nucleotide variations (SNVs), with limited genome-wide analysis of CNVs in large cohorts, especially in populations that are under-represented in genetic studies including people of African descent. Methods We carried out a genome-wide copy number analysis in > 3400 healthy Bantu Africans from Tanzania. Signal intensity data from high density (> 2.5 million probes) genotyping arrays were used for CNV calling with three algorithms including PennCNV, DNAcopy and VanillaICE. Stringent quality metrics and filtering criteria were applied to obtain high confidence CNVs. Results We identified over 400,000 CNVs larger than 1 kilobase (kb), for an average of 120 CNVs (SE = 2.57) per individual. We detected 866 large CNVs (≥ 300 kb), some of which overlapped genomic regions previously associated with multiple congenital anomaly syndromes, including Prader-Willi/Angelman syndrome (Type1) and 22q11.2 deletion syndrome. Furthermore, several of the common CNVs seen in our cohort (≥ 5%) overlap genes previously associated with developmental disorders. Conclusions These findings may help refine the phenotypic outcomes and penetrance of variations affecting genes and genomic regions previously implicated in diseases. Our study provides one of the largest datasets of CNVs from individuals of African ancestry, enabling improved clinical evaluation and disease association of CNVs observed in research and clinical studies in African populations

    Early-onset autoimmune vitiligo associated with an enhancer variant haplotype that upregulates class II HLA expression

    Get PDF
    Vitiligo is an autoimmune disease in which melanocyte destruction causes skin depigmentation, with 49 loci known from previous GWAS. Aiming to define vitiligo subtypes, we discovered that age-of-onset is bimodal; one-third of cases have early onset (mean 10.3 years) and two-thirds later onset (mean 34.0 years). In the early-onset subgroup we found novel association with MHC class II region indel rs145954018, and independent association with the principal MHC class II locus from previous GWAS, represented by rs9271597; greatest association was with rs145954018del-rs9271597A haplotype (P = 2.40 × 10−86, OR = 8.10). Both rs145954018 and rs9271597 are located within lymphoid-specific enhancers, and the rs145954018del-rs9271597A haplotype is specifically associated with increased expression of HLA-DQB1 mRNA and HLA-DQ protein by monocytes and dendritic cells. Thus, for vitiligo, MHC regulatory variation confers extreme risk, more important than HLA coding variation. MHC regulatory variation may represent a significant component of genetic risk for other autoimmune diseases

    Genomewide Association Study of African Children Identifies Association of <i>SCHIP1</i> and <i>PDE8A</i> with Facial Size and Shape

    No full text
    <div><p>The human face is a complex assemblage of highly variable yet clearly heritable anatomic structures that together make each of us unique, distinguishable, and recognizable. Relatively little is known about the genetic underpinnings of normal human facial variation. To address this, we carried out a large genomewide association study and two independent replication studies of Bantu African children and adolescents from Mwanza, Tanzania, a region that is both genetically and environmentally relatively homogeneous. We tested for genetic association of facial shape and size phenotypes derived from 3D imaging and automated landmarking of standard facial morphometric points. SNPs within genes <i>SCHIP1</i> and <i>PDE8A</i> were associated with measures of facial size in both the GWAS and replication cohorts and passed a stringent genomewide significance threshold adjusted for multiple testing of 34 correlated traits. For both <i>SCHIP1</i> and <i>PDE8A</i>, we demonstrated clear expression in the developing mouse face by both whole-mount <i>in situ</i> hybridization and RNA-seq, supporting their involvement in facial morphogenesis. Ten additional loci demonstrated suggestive association with various measures of facial shape. Our findings, which differ from those in previous studies of European-derived whites, augment understanding of the genetic basis of normal facial development, and provide insights relevant to both human disease and forensics.</p></div

    Cross-disorder analysis of schizophrenia and 19 immune-mediated diseases identifies shared genetic risk

    No full text
    Many immune diseases occur at different rates among people with schizophrenia compared to the general population. Here, we evaluated whether this phenomenon might be explained by shared genetic risk factors. We used data from large genome-wide association studies to compare the genetic architecture of schizophrenia to 19 immune diseases. First, we evaluated the association with schizophrenia of 581 variants previously reported to be associated with immune diseases at genome-wide significance. We identified five variants with potentially pleiotropic effects. While colocalization analyses were inconclusive, functional characterization of these variants provided the strongest evidence for a model in which genetic variation at rs1734907 modulates risk of schizophrenia and Crohn's disease via altered methylation and expression of EPHB4-a gene whose protein product guides the migration of neuronal axons in the brain and the migration of lymphocytes towards infected cells in the immune system. Next, we investigated genome-wide sharing of common variants between schizophrenia and immune diseases using cross-trait LD score regression. Of the 11 immune diseases with available genome-wide summary statistics, we observed genetic correlation between six immune diseases and schizophrenia: inflammatory bowel disease (rg = 0.12 ± 0.03, P = 2.49 × 10-4), Crohn's disease (rg = 0.097 ± 0.06, P = 3.27 × 10-3), ulcerative colitis (rg = 0.11 ± 0.04, P = 4.05 × 10-3), primary biliary cirrhosis (rg = 0.13 ± 0.05, P = 3.98 × 10-3), psoriasis (rg = 0.18 ± 0.07, P = 7.78 × 10-3) and systemic lupus erythematosus (rg = 0.13 ± 0.05, P = 3.76 × 10-3). With the exception of ulcerative colitis, the degree and direction of these genetic correlations were consistent with the expected phenotypic correlation based on epidemiological data. Our findings suggest shared genetic risk factors contribute to the epidemiological association of certain immune diseases and schizophrenia

    <i>SCHIP1</i> locus associated with centroid size.

    No full text
    <p><b>(A)</b> Regional association plot of centroid size at the <i>SCHIP1</i> locus. Association data are shown using GWAS P-values with the meta-analysis P-value for the lead SNP, rs79909949. The LD pattern is based on the 1000 Genomes Project 2012 African reference and GRCh37/hg19. The estimated recombination rate (cM/Mb) is from HapMap samples. <b>(B)</b> Relative facial size at the upper and lower 95% confidence intervals for centroid size after adjusting for sex and age.</p
    corecore